
CloudifierNet
Deep Vision Models for Artificial Image Processing

Andrei Ionut DAMIAN (Author)

Cloudifier SRL, Bucharest, Romania

Laurentiu Gheorghe PICIU (Author)

University “Politehnica” Bucharest, Romania

Nicolae TAPUS (Author)

University “Politehnica” Bucharest, Romania

Alexandru PURDILA (Author)

Cloudifier SRL, Bucharest, Romania

Abstract — With the advancement of Artificial Intelligence and

Deep Learning with its multitude of applications in particular, a

new area of research is emerging – that of automated systems

development and maintenance. With this particular area of

application of Artificial Intelligence, a broad range of computer

users – from IT maintenance personnel to software developers –

will be enabled to use automated inference and prediction tools.

These automation tools will be in future available for a multitude

of tasks such as general purpose automated maintenance of

custom applications and operating system issues. Our vision is to

research and develop truly intelligent systems able to analyze user

interfaces from various sources and generate real and usable

inferences ranging from architecture analysis to actual code

generation. One key element of such systems is that of artificial

scene detection and analysis based on deep learning computer

vision systems. Computer vision models and particularly deep

directed acyclic graphs based on convolutional modules are

generally constructed and trained based on natural images

datasets. Due to this fact, the models will develop during the

training process natural image feature detectors with the

exception of the base graph modules that will learn basic primitive

features. In the current paper we will present the base principles

of a deep neural pipeline for computer vision applied to artificial

scenes (scenes generated by user interfaces or similar). Finally, we

will present our conclusions based on experimental development

and benchmarking against state-of-the-art transfer-learning

implemented deep vision models.

Keywords— artificial intelligence, deep learning, computer

vision, automated programming

I. INTRODUCTION

Artificial Intelligence and Deep Learning in particular rapid

advancement in the past years generates an almost infinite
multitude of potential applications with strong impact in our
lives [1]. From business predictive analytics to computer vision,
from data security to healthcare it is hard to imagine a particular
field where Artificial Intelligence impact will not be felt in
coming future. One particular area of interest is the area of
computer systems and software development and maintenance.
In this particular area we foresee a number of potential
applications some of which are already in research development
in various prestigious artificial intelligence laboratories. Among
these applications there are two particular directions that we are
focused on:

• Automated legacy application translation using
advanced visual inference and automated programming
based on user interface activity. Within this research
direction the main objective is construct advanced
visual recognition systems for artificial scene instances
segmentation coupled with sequence-to-sequence
translation of user actions and visual flow to finally
output actual intermediary source code. This
intermediary source code must address both the user
experience graphical interface and the actual basic
functionalities of the user interface control behavior. A
particular use case would be the translation of a simple
financial management application written for windows
or even MS-DOS operating systems in ‘90s to a modern
web-based online system that would be uploaded within
a cloud computing infrastructure.

• Intelligent inference of systems maintenance use cases
is the second area where our main objective is to
advance the state-of-the-art in the area of automated
maintenance tools for 3rd party software systems. For
this particular area we focus on the need to produce
intelligent virtual agents capable to replacing the need
for remote analysis currently done by software
engineering and system administrators. As a particular
use case, we could imagine the maintenance procedure
of a client-server system where the end-user interacts
with a thin-client user-interface and requires the
systems/software engineers assistance for a potential
identified bug. In this case our end-to-end pipeline could
understand the basic behavior and flow of the given user
interface (and the potential buggy functionalities) and
provide the maintenance team with advanced debugging
information.

 Both the above mentioned areas of intervention will be
further detailed in following sections however then main focus
of our paper is to present our research findings in the area of
artificial (synthetically generated via computer graphics
methods) scene inference. In this particular area we started with
the most well-known architectures – presented within the
Related Work section of our paper – we have developed our own
training and validations datasets and finally we have identified
optimal network architecture for end-to-end artificial scene
inference. Aside from the artificial scene inference task we also
have included within our scope of work the inference of natural

Research sponsored by Cloudifier SRL

scenes generated by actual hand-drawing of user interfaces
mock-ups thus increasing the real and commercial application of
our research and experimentation work.

II. RELATED WORK

Our work relates to the most influential deep convolutional

directed acyclic graphs architectures – namely the Inception [2]
and ResNet [3] as well as several other architectures such as
separable convolution network proposed by Xception [4], and
also the fully convolutional model for end-to-end image
segmentation FCN [5] based on the straight sequential VGGNet
[6] deep neural network.

A. Inceptions, residual and skip connections

Our work is strongly related with de Inception architecture

developed by Szegedy et al [2] combined with the residual
connections proposed by He et al [3] and finally introduced by
Szegedy et al in the 4th version of the Inception architecture [7].
As it will be presented within the architectural section we are
using a custom version of a Inception-residual module
interlinked together with modules based on separable depth-
wise convolutions fully augmented by residual connections for
efficient gradient back-propagation.

B. End-to-end image semantic segmentation

The proposed architecture is based on the basic principles of

dropping all pooling layers within the convolutional network
and inserting larger step convolutions for map width/height
reduction and also replacing the dense layers with convolutional.
Finally, this results in transforming the entire computational
graph into one big fully convolutional directed acyclic graph. As
described in the related work by Long et at [5] we replace the
final fully connected dense top layers with transposed
convolution layers in order to learn upscaling kernels that will
convert the reduced activation volumes from the final
convolutions to the initial size and depth of the image. We also
use the skip-and-merge strategy in order to fuse lower-level
upscaled maps with later, and thus higher-level, upscaled maps.

C. Other similar work in this area

The field of automatic program generation that strongly

relates to our work has known many attempts and approaches
over the years ranging from systems designed for automatic
code generation based on (near) natural language specifications
up to source code generation based on an interface mockup
(computer aided drawing of user-interface mockup). The closest
and newest similar work to our knowledge is the pix2code [8]
proposed by Beltramelli T. In relation to this proposed approach
we argue that our work is more generalized as follows:

• in terms of target platform as we are proposing
cross-platform approach similar to our early work
[9]

• in terms of source input our advanced neural model
accepts both artificial data (such as screen
snapshots) and hand-drawn natural images (mock-
ups)

• our model generates a dense prediction of the actual
observed UI scene (artificial or natural) excluding
the need of a RNN-based source code generator and
inherited problems such as the potentially
erroneous generated code or the need for soft/hard
attention (proposed as a future improvement in
referenced work)

III. PROPOSED ARCHITECTURE

A. End-to-end trained portable model justification

One of the main goals of our chosen architecture design is

to be able to deploy the production models on different devices

in inference mode the same version of the trained computational

graph. The initial challenge consisted in obtaining a architecture

that will run with acceptable performance results both on GPU-

augmented embedded devices such as Nvidia Jetson family and

on mobile devices that do not have GPU parallel computing

capabilities (either Android or similar devices).

One of the use cases that we envisioned from the very

beginning was a mobile device app that would enable user-

interface inference and refactoring. More specifically, the app

would enable users with no prior software engineering

experience to take a snapshot of a legacy application screen, a

website or a simple UI mockup hand-drawing. Following this

initial step, the deployed pre-trained model in the smart-phone

device would generate an inference of the snapshot image and

produce a UI functional design including multiple visual

templates based on inferred functionalities. Finally, the app,

using an intermediary module/engine, would generate a simple

runtime environment, including minimal views and controllers,

for a target web-server and with one or multiple cloud

publishing mechanisms would push the functional website

where it could be accessed.

B. Model achitecture

The main building blocks of our proposed architecture are

the custom directed acyclic graph blocks presented in Figure 1
and Figure 2. The first basic building block based on the
Inception-ResNet [7] concept is basically a three-column
directed acyclic graph with a skip connection that starts with a
1x1 convolution without non-linearity that prepares the input
volume and connects it to the final bottleneck final that takes as
input the concatenated 3-columns. Within the 3 columns
infrastructure we use simple 3x3 and 5x5 same convolution
together with the 1x1 bottleneck convolutions. All convolutions
are followed by batch-normalization before the non-linearity.
We also employ pre-activation skip connection – a network

architecture that do not introduce any non-linearity between any
two skip-connections as proposed by He et al in [10]. The main
objective of this block architecture is to create a local network
topology as proposed by the network-in-network architecture of
Inception coupled with latest research findings in employing
skip-connections. In order to decrease our network size, we use
the wide residual network principles described by Zagoruyko et
al [11] and increase the volumes of our residual blocks.

Block Input

N/2 Conv 1x1 (same)
BN

Relu

N/4 Conv 1x1 (same)
BN

Relu

N/4 Conv 1x1 (same)
BN

Relu

N/2 Conv 3x3 (same)
BN

Relu

N Conv 3x3 (same)
BN

Relu

N/4 Conv 5x5 (same)
BN

Relu

BatchNorm

Relu

Concat

N Conv 1x1 (same)

Add Input

INC RES BLOCK N

Figure 1– INC RES BLOCK with N output filters

The second building block “DS RES Block” is based on the
concept of separable depth-wise convolution proposed by
Chollet [4] in the Xception architecture together with the already
mentioned skip connections required for the gradient flowing
optimization. Each of the DS RES Blocks is then upscaled using
a transposed convolution 2D (or a so called backwards
convolution) using a specific fractional stride in order to upscale
from respective volume to the initial input volume height and
width.

Within the Readout Block all the upscaled volumes are
merged in a H*W*D volume where H and W are respectively the
height and width of input volume and the D is the depth of the
concatenated volumes from the DS RES Blocks. Finally, a dense
output map of size H*W*C is generated with a simple fully
connected layer applied on each of the H*W fibers in the
H*W*D volume, where C is the number of inferred classes. This
particular architecture allows the fully convolutional DAG to be
input volume size agnostic and to have the capacity to accept any
kind of input volume without height or/or width restriction.

SEP RES BLOCK N

Block Input

BatchNorm

Relu

N/4 Separable Conv 3x3
BN

Relu

N/2 Separable Conv 3x3
BN

Relu

N Conv 1x1

Add Input

Figure 2– DS RES Block with N output filters

As previously mentioned, in order to achieve our proposed
goal, we use a alternation of the two main building blocks as
presented in Figure 3. The architecture has been determined
experimentally and has been tested both on natural and artificial
images.

STEM BLOCK

DS RES BLOCK 512

INC RES BLOCK 128

INC RES BLOCK 256

INC RES BLOCK 384

DS RES BLOCK 1024

DS RES BLOCK 2048

READOUT BLOCK

IMAGE

Tr
an

sp

C
o

n
v2

D

Tr
an

sp

C
o

n
v2

D

Tr
an

sp

C
o

n
v2

D

Figure 3– Overall architecture of CloudifierNet

The main objective of this architecture is to obtain the good
balance between powerful feature detection – based on inception
modules with skip connections - and model complexity. Also, a
very important objective is to maximize the operation
parallelism within out computational graph by reducing as much
as possible the sequential operations and transferring the
complexity to the parallelizable operations. This is achieved
effectively through reducing the length of the computational
graph while increasing the so-called depth of each
computational node, all this by increasing the number of
convolutional kernels in each convolutional operation – either
depth-wise separable or classic Conv2D operation. As a result
our computational graph can maximize the use of GPU
numerical core parallelism both at training time and inference
time. For training we use P5000 family NVidia GPU – as it will
be further described within the Training and Experimentation
section - while at inference time we use both Nvidia Jetson TK1
and the newer TX2 generation.

In terms of complexity we have a number 109 layers
summing a total of 10.8M weights for the CloudifierNet model.
For initial experiments we used 32bit floats but we plan on
further experimenting with reduced size weights (16bit, 8 bit
and even extreme 1 bit for inference) based on [12] [13] and with
combined float/integer for weights/activations such as the ones
proposed by Lai L et al [14].

Finally, our proposed readout layer is a dense prediction
SoftMax layers where each input pixel is given a probability
over all known classes similar to the fully convolutional
architecture for image segmentation proposed by Long et al [5].
This structure allows us to further train our models with negative
log likelihood objective function applied to the entire dense
prediction map for all images within a minibatch.

C. Datasets preparation and augmentation

Our models have been trained using two different kinds of

datasets that we are planning on publishing open-source for

further research use:

• the “artificial” dataset consisting of software

generated user interfaces controls and actual scenes

(full user interfaces)

• the “natural” dataset consisting of hand-drawn

mockups

The “artificial” dataset preparation and augmentation

process has been done in multiple iterations. The main aspects

that have been taken into account have been:

a) Operating systems dependent visual aspects of user

interface (OS-theme visual controls). For this

particular issue we have targeted legacy operating

systems and their user-interfaces themes such as

Windows 95, 98 and XP.

b) Compiler and development environment dependent

visual control primitives. Narrowing the search to the

proposed target operating systems, we have researched

several different legacy development environments

(such as Borland Delphi 1-3, Visual Basic, FoxPro,

etc.) and extracted visual themes and customary user

interface graphical primitives.

Finally, all “artificial” dataset observations have been

generated using automated tools that performed the following

tasks: (a) visual control generation; (b) automatic image

labeling; (c) automatic visual control instance segmentation.

The final “artificial” dataset is composed of multiple meta-

batches of 3072 observations of 352x352 cropped images with

3 channels, based on the fact that we train our models with

various mini-batch size within 32-128 range. As previously

mentioned the labels dataset contains both class-per-

observation as well as dense pixel-level classes – each image

observation has an associated dense pixel-class map and an

overall label. We use both coarse labels based on well-known

major UI control groups and fine labels where each type of UI

visual has multiple sub-classes.
 The second dataset, the so called “natural” dataset consists
in hand-drawn examples of user interface primitives or actual
user-interfaces mockups. It is important to mention that this
dataset is limited in size due to the complicated nature of the
hand-drawing and scanning process. Nevertheless, we are using
varied image dataset augmentation approaches such as random
rotation, random shifting, random channel shifting, random
flipping, random rescaling, random cropping in order to
dramatically increase the size of our proposed natural image
dataset (up to 7 times the original size of the natural dataset). It
is important to mention that most of these proposed image data
augmentation methods are not required for the artificial dataset
due to the actual used image/data acquisition process.

IV. TRAINING AND EXPERIMENTS

A. Models training setup

 Given the previously presented architecture and datasets
with dense-labels per image and considering each image has a H
x W size, for N mini-batch images our training objective is to
minimize the dense output cross-entropy or more specifically the
negative log likelihood objective function w.r.t. the model
parameters Θ.

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

−
1

𝑁∗𝑊∗𝐻
∑ ∑ 𝑙𝑜𝑔 𝑝

𝜃
(�̂�

𝐻,𝑊
= 𝑦

𝐻,𝑊
|𝑋, 𝑌)

𝑊,𝐻
𝑥=1,𝑦=1

𝑁
𝑖=1 (1)

 The dense output of the DAG is nothing more than a Softmax
function applied to each 1x1xC “fiber” of the final output
volume.

ℎ𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥𝑖
(𝑗)

| 𝜃, 𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁) =
𝑒

𝜃𝑇𝑥
𝑖
(𝑗)

∑ 𝑒
𝜃𝑇𝑥

𝑘
(𝑗)

𝑁
𝑘

 (2)

 We trained our models end-to-end using Adam optimizer on
batches of variable size in multiple training experiments. We
used an initial learning rate of 0.01 and applied learning rate
decay based on monitoring the dev-dataset loss plateauing
behavior.

B. Training hardware infrastructure

 As a training environment infrastructure, we used both GPU
and CPU. The training machine CPU capabilities consisted of
32 GB RAM and 2 Xeon processors each with 8 physical cores
for total logical core count of 32 cores. Nevertheless, the main
training of our models has been done on the machine GPUs
summing a total of 4224 CUDA cores provided by a 16 GB
Nvidia Pascal 5000 GPU with 2560 CUDA cores and an
additional 8GB Nvidia Maxwell 4000 GPU with 1664 CUDA
cores.

 In our pipeline validation experiments we have targeted both
types of proposed scenes: artificial images - that is actual user
interface screen-shots – and also hand-drawn user interface
mockups. For the experiments we used several versions of our
models that varied both the model required
memory/computation capacity and the model training time. We
considered this approach in order to cover the potential usage of
our model pipeline in smart mobile devices as previously
mentioned in our architecture section.

Model ArtAcc ArtRec NatAcc NatRec

Cloudifier50_1 85.1% 91.2% 84.3% 88.0%

Cloudifier50_2 88.3% 92.1% 86.2% 90.7%

Cloudifier109_1 95.2% 97.2% 93.1% 95.2%

Cloudifier109_2 98.4% 99.7% 96.1% 96.1%

Table 1 – Experimentation results for test dataset

The final results of our experiments presented in Table 1 are
based on two different models both following previously
described architecture. More specifically, Cloudifier109 is the
109 layers model presented in Proposed Architecture section and
Cloudifier50 is a reduced version in terms of modules of the 109
layers version. The benchmarking tests have been performed
both on a reduced performance mobile computer using a Nvidia
GeForce 940MX with only 2GB RAM and a total of 384 CUDA
cores. We have also considered running the inference task and
on a Nvidia Jetson TX2 device with 256 core Pascal GPU and
8GB of RAM. The inference environment for our models has
been based on TensorFlow [15] and also on a specialized
inference engine, namely TensorRT - a library that facilitates
high performance inference on NVIDIA GPUs. Final results
have been generated by cross-validation approach and averaged
over target environments.

 For training/validation/testing split we decided to retain 7%
of the whole joined dataset for validation/testing purposes and
93% has been used for actual model training. Out of the 7%
retained dataset we used 4% for testing and 3% for validation.

During the initial training experiments, we additionally used in-
training random validation dataset of 5% of proposed training
data.

 The tests and the results have been divided in two categories
– the artificial scene inference and the natural hand-drawn
mockup scenes inference. In our experimentation results table
ArtAcc and ArtRec represent the accuracy and the recall for the
artificial dataset tests, while NatAcc and NatRec represent the
accuracy and the recall for the natural hand-drawn scenes.

 As it can be observed from the above presented performance
indicators we achieved results that clearly demonstrate the
capability of our model to infer user interface functionalities
based on static scenes.

V. CONCLUSIONS

 Our proposed models have achieved beyond state-of-the-art
results in the area of user-interface scene inference and a new
state-of-the-art status in the area of natural UX mockups
inference where we did not identify any particular current state-
of-the-art. Although it has proven a powerful approach for the
proposed tasks, our end-to-end pipeline is not yet capable of
inferring actual high-level functionalities. Thus, one area of
further research and improvement of the end-to-end pipeline
model is the addition of high-end application functionality
inference, albeit only for artificial user-interface video streams.
This future proposed work will augment our models with the
ability to analyze a video stream presenting a actual user-
application interaction and infer actual user experience
including high-level process functionality. This will further lead
to the potential employment of sequence to sequence models
that will generate actual high-level process functionality – rather
than the basic one generated by our existing models.

VI. BIBLIOGRAPHY

[1] A. Agrawal, J. Gans and A. Goldfarb, "Managing the

Machines," HBR, 2016.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich,

"Going Deeper with Convolutions," eprint

arXiv:1409.4842, 2014.

[3] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual

Learning for Image Recognition," eprint

arXiv:1512.03385, 2015.

[4] F. Chollet, "Xception: Deep Learning with Depthwise

Separable Convolutions," eprint arXiv:1610.02357,

2016.

[5] J. Long, E. Shelhamer and T. Darrell, "Fully

Convolutional Networks for Semantic Segmentation,"

arXiv:1411.4038, 2015.

[6] K. Simonyan and A. Zisserman, "Very Deep

Convolutional Networks for Large-Scale Image

Recognition," arXiv:1409.1556, Computer Vision and

Pattern Recognition, 2015.

[7] C. Szegedy, S. Ioffe, V. Vanhoucke and A. Alemi,

"Inception-v4, Inception-ResNet and the Impact of

Residual Connections on Learning," arXiv:1602.07261,

Computer Vision and Pattern Recognition, 2016.

[8] T. Beltramelli, "pix2code: Generating Code from a

Graphical User,"

https://arxiv.org/pdf/1705.07962v2.pdf, 2017.

[9] A. Damian and N. Tapus, "Model Architecture for

Automatic Translation and Migration of Legacy

Applications to Cloud Computing Environments," in

CSCS, Bucharest, 2017.

[10] K. He, X. Zhang, S. Ren and J. Sun, "Identity Mappings

in Deep Residual Networks," arXiv:1603.05027, 2016.

[11] S. Zagoruyko and N. Komodakis, "Wide Residual

Networks," arXiv:1605.07146, 2017.

[12] S. Vogel, C. Schorn, A. Guntoro and G. Ascheid,

"Efficient Stochastic Inference of Bitwise Deep Neural

Networks," Workshop on Efficient Methods for Deep

Neural Networks at Neural Information Processing

Systems Conference 2016, NIPS 2016, EMDNN 2016,

2016.

[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and

Y. Bengio, "Quantized Neural Networks: Training

Neural Networks with Low Precision Weights and

Activations," https://arxiv.org/abs/1703.03073, 2017.

[14] L. Lai, N. Suda and V. Chandra, "Deep Convolutional

Neural Network Inference with Floating-point Weights

and Fixed-point Activations,"

https://arxiv.org/abs/1703.03073, 2017.

[15] Abadi, Barham, Chen, Davis, Dean, Devin, Ghemawat,

Irving, Isard, Kudlur, Levenberg, Monga, Moore,

Murray, Steiner, Tucker, Vasudevan, Warden, Wicke,

Yu and Zheng, "TensorFlow: A System for Large-Scale

Machine Learning," in 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’16), Savannah, 2016.

