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Abstract — With the advancement of Artificial Intelligence and 

Deep Learning with its multitude of applications in particular, a 

new area of research is emerging – that of automated systems 

development and maintenance. With this particular area of 

application of Artificial Intelligence, a broad range of computer 

users – from IT maintenance personnel to software developers – 

will be enabled to use automated inference and prediction tools. 

These automation tools will be in future available for a multitude 

of tasks such as general purpose automated maintenance of 

custom applications and operating system issues. Our vision is to 

research and develop truly intelligent systems able to analyze user 

interfaces from various sources and generate real and usable 

inferences ranging from architecture analysis to actual code 

generation. One key element of such systems is that of artificial 

scene detection and analysis based on deep learning computer 

vision systems. Computer vision models and particularly deep 

directed acyclic graphs based on convolutional modules are 

generally constructed and trained based on natural images 

datasets. Due to this fact, the models will develop during the 

training process natural image feature detectors with the 

exception of the base graph modules that will learn basic primitive 

features. In the current paper we will present the base principles 

of a deep neural pipeline for computer vision applied to artificial 

scenes (scenes generated by user interfaces or similar). Finally, we 

will present our conclusions based on experimental development 

and benchmarking against state-of-the-art transfer-learning 

implemented deep vision models. 

Keywords— artificial intelligence, deep learning, computer 

vision, automated programming 

I.  INTRODUCTION  

 
Artificial Intelligence and Deep Learning in particular rapid 

advancement in the past years generates an almost infinite 
multitude of potential applications with strong impact in our 
lives [1]. From business predictive analytics to computer vision, 
from data security to healthcare it is hard to imagine a particular 
field where Artificial Intelligence impact will not be felt in 
coming future. One particular area of interest is the area of 
computer systems and software development and maintenance. 
In this particular area we foresee a number of potential 
applications some of which are already in research development 
in various prestigious artificial intelligence laboratories. Among 
these applications there are two particular directions that we are 
focused on: 

• Automated legacy application translation using 
advanced visual inference and automated programming 
based on user interface activity. Within this research 
direction the main objective is construct advanced 
visual recognition systems for artificial scene instances 
segmentation coupled with sequence-to-sequence 
translation of user actions and visual flow to finally 
output actual intermediary source code. This 
intermediary source code must address both the user 
experience graphical interface and the actual basic 
functionalities of the user interface control behavior. A 
particular use case would be the translation of a simple 
financial management application written for windows 
or even MS-DOS operating systems in ‘90s to a modern 
web-based online system that would be uploaded within 
a cloud computing infrastructure. 

• Intelligent inference of systems maintenance use cases 
is the second area where our main objective is to 
advance the state-of-the-art in the area of automated 
maintenance tools for 3rd party software systems. For 
this particular area we focus on the need to produce 
intelligent virtual agents capable to replacing the need 
for remote analysis currently done by software 
engineering and system administrators. As a particular 
use case, we could imagine the maintenance procedure 
of a client-server system where the end-user interacts 
with a thin-client user-interface and requires the 
systems/software engineers assistance for a potential 
identified bug. In this case our end-to-end pipeline could 
understand the basic behavior and flow of the given user 
interface (and the potential buggy functionalities) and 
provide the maintenance team with advanced debugging 
information. 

 Both the above mentioned areas of intervention will be 
further detailed in following sections however then main focus 
of our paper is to present our research findings in the area of 
artificial (synthetically generated via computer graphics 
methods) scene inference. In this particular area we started with 
the most well-known architectures – presented within the 
Related Work section of our paper – we have developed our own 
training and validations datasets and finally we have identified 
optimal network architecture for end-to-end artificial scene 
inference. Aside from the artificial scene inference task we also 
have included within our scope of work the inference of natural 
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scenes generated by actual hand-drawing of user interfaces 
mock-ups thus increasing the real and commercial application of 
our research and experimentation work. 

II. RELATED WORK 

 
Our work relates to the most influential deep convolutional 

directed acyclic graphs architectures – namely the Inception [2]  
and ResNet [3] as well as several other architectures such as 
separable convolution network proposed by Xception [4], and 
also the fully convolutional model for end-to-end image 
segmentation FCN [5] based on the straight sequential VGGNet 
[6] deep neural network. 

A. Inceptions, residual and skip connections 

 
Our work is strongly related with de Inception architecture 

developed by Szegedy et al [2] combined with the residual 
connections proposed by He et al [3] and finally introduced by 
Szegedy et al in the 4th version of the Inception architecture [7]. 
As it will be presented within the architectural section we are 
using a custom version of a Inception-residual module 
interlinked together with modules based on separable depth-
wise convolutions fully augmented by residual connections for 
efficient gradient back-propagation. 

B. End-to-end image semantic segmentation 

 
The proposed architecture is based on the basic principles of 

dropping all pooling layers within the convolutional network 
and inserting larger step convolutions for map width/height 
reduction and also replacing the dense layers with convolutional.  
Finally, this results in transforming the entire computational 
graph into one big fully convolutional directed acyclic graph. As 
described in the related work by Long et at [5] we replace the 
final fully connected dense top layers with transposed 
convolution layers in order to learn upscaling kernels that will 
convert the reduced activation volumes from the final 
convolutions to the initial size and depth of the image. We also 
use the skip-and-merge strategy in order to fuse lower-level 
upscaled maps with later, and thus higher-level, upscaled maps. 

C. Other similar work in this area 

 
The field of automatic program generation that strongly 

relates to our work has known many attempts and approaches 
over the years ranging from systems designed for automatic 
code generation based on (near) natural language specifications 
up to source code generation based on an interface mockup 
(computer aided drawing of user-interface mockup). The closest 
and newest similar work to our knowledge is the pix2code [8] 
proposed by Beltramelli T. In relation to this proposed approach 
we argue that our work is more generalized as follows:  

• in terms of target platform as we are proposing 
cross-platform approach similar to our early work 
[9] 

• in terms of source input our advanced neural model 
accepts both artificial data (such as screen 
snapshots) and hand-drawn natural images (mock-
ups)  

• our model generates a dense prediction of the actual 
observed UI scene (artificial or natural) excluding 
the need of a RNN-based source code generator and 
inherited problems such as the potentially 
erroneous generated code or the need for soft/hard 
attention (proposed as a future improvement in 
referenced work) 

 

III. PROPOSED ARCHITECTURE 

 

A. End-to-end trained portable model justification 

 

One of the main goals of our chosen architecture design is 

to be able to deploy the production models on different devices 

in inference mode the same version of the trained computational 

graph. The initial challenge consisted in obtaining a architecture 

that will run with acceptable performance results both on GPU-

augmented embedded devices such as Nvidia Jetson family and 

on mobile devices that do not have GPU parallel computing 

capabilities (either Android or similar devices).  

One of the use cases that we envisioned from the very 

beginning was a mobile device app that would enable user-

interface inference and refactoring. More specifically, the app 

would enable users with no prior software engineering 

experience to take a snapshot of a legacy application screen, a 

website or a simple UI mockup hand-drawing. Following this 

initial step, the deployed pre-trained model in the smart-phone 

device would generate an inference of the snapshot image and 

produce a UI functional design including multiple visual 

templates based on inferred functionalities. Finally, the app, 

using an intermediary module/engine, would generate a simple 

runtime environment, including minimal views and controllers, 

for a target web-server and with one or multiple cloud 

publishing mechanisms would push the functional website 

where it could be accessed. 

 

B. Model achitecture 

 
The main building blocks of our proposed architecture are 

the custom directed acyclic graph blocks presented in Figure 1 
and Figure 2. The first basic building block based on the 
Inception-ResNet [7] concept is basically a three-column 
directed acyclic graph with a skip connection that starts with a 
1x1 convolution without non-linearity that prepares the input 
volume and connects it to the final bottleneck final that takes as 
input the concatenated 3-columns. Within the 3 columns 
infrastructure we use simple 3x3 and 5x5 same convolution 
together with the 1x1 bottleneck convolutions. All convolutions 
are followed by batch-normalization before the non-linearity. 
We also employ pre-activation skip connection – a network 



architecture that do not introduce any non-linearity between any 
two skip-connections as proposed by He et al in [10]. The main 
objective of this block architecture is to create a local network 
topology as proposed by the network-in-network architecture of 
Inception coupled with latest research findings in employing 
skip-connections. In order to decrease our network size, we use 
the wide residual network principles described by Zagoruyko et 
al [11] and increase the volumes of our residual blocks. 
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Figure 1– INC RES BLOCK with N output filters 

 

The second building block “DS RES Block” is based on the 
concept of separable depth-wise convolution proposed by 
Chollet [4] in the Xception architecture together with the already 
mentioned skip connections required for the gradient flowing 
optimization. Each of the DS RES Blocks is then upscaled using 
a transposed convolution 2D (or a so called backwards 
convolution) using a specific fractional stride in order to upscale 
from respective volume to the initial input volume height and 
width.  

Within the Readout Block all the upscaled volumes are 
merged in a H*W*D volume where H and W are respectively the 
height and width of input volume and the D is the depth of the 
concatenated volumes from the DS RES Blocks. Finally, a dense 
output map of size H*W*C is generated with a simple fully 
connected layer applied on each of the H*W fibers in the 
H*W*D volume, where C is the number of inferred classes. This 
particular architecture allows the fully convolutional DAG to be 
input volume size agnostic and to have the capacity to accept any 
kind of input volume without height or/or width restriction. 
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Figure 2– DS RES Block with N output filters 

As previously mentioned, in order to achieve our proposed 
goal, we use a alternation of the two main building blocks as 
presented in Figure 3. The architecture has been determined 
experimentally and has been tested both on natural and artificial 
images. 
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Figure 3– Overall architecture of CloudifierNet 



The main objective of this architecture is to obtain the good 
balance between powerful feature detection – based on inception 
modules with skip connections - and model complexity. Also, a 
very important objective is to maximize the operation 
parallelism within out computational graph by reducing as much 
as possible the sequential operations and transferring the 
complexity to the parallelizable operations. This is achieved 
effectively through reducing the length of the computational 
graph while increasing the so-called depth of each 
computational node, all this by increasing the number of 
convolutional kernels in each convolutional operation – either 
depth-wise separable or classic Conv2D operation. As a result 
our computational graph can maximize the use of GPU 
numerical core parallelism both at training time and inference 
time. For training we use P5000 family NVidia GPU – as it will 
be further described within the Training and Experimentation 
section - while at inference time we use both Nvidia Jetson TK1 
and the newer TX2 generation. 

In terms of complexity we have a number 109 layers 
summing a total of 10.8M weights for the CloudifierNet model. 
For initial experiments we used 32bit floats but we plan on 
further experimenting with reduced size weights  (16bit, 8 bit 
and even extreme 1 bit for inference) based on [12] [13] and with 
combined float/integer for weights/activations such as the ones 
proposed by Lai L et al [14].  

Finally, our proposed readout layer is a dense prediction 
SoftMax layers where each input pixel is given a probability 
over all known classes similar to the fully convolutional 
architecture for image segmentation proposed by Long et al [5]. 
This structure allows us to further train our models with negative 
log likelihood objective function applied to the entire dense 
prediction map for all images within a minibatch. 

C. Datasets preparation and augmentation 

 

Our models have been trained using two different kinds of 

datasets that we are planning on publishing open-source for 

further research use: 

• the “artificial” dataset consisting of software 

generated user interfaces controls and actual scenes 

(full user interfaces) 

• the “natural” dataset consisting of hand-drawn 

mockups 

 

The “artificial” dataset preparation and augmentation 

process has been done in multiple iterations. The main aspects 

that have been taken into account have been:  

a) Operating systems dependent visual aspects of user 

interface (OS-theme visual controls). For this 

particular issue we have targeted legacy operating 

systems and their user-interfaces themes such as 

Windows 95, 98 and XP. 

b) Compiler and development environment dependent 

visual control primitives. Narrowing the search to the 

proposed target operating systems, we have researched 

several different legacy development environments 

(such as Borland Delphi 1-3, Visual Basic, FoxPro, 

etc.) and extracted visual themes and customary user 

interface graphical primitives. 

Finally, all “artificial” dataset observations have been 

generated using automated tools that performed the following 

tasks: (a) visual control generation; (b) automatic image 

labeling; (c) automatic visual control instance segmentation. 

The final “artificial” dataset is composed of multiple meta-

batches of 3072 observations of 352x352 cropped images with 

3 channels, based on the fact that we train our models with 

various mini-batch size within 32-128 range. As previously 

mentioned the labels dataset contains both class-per-

observation as well as dense pixel-level classes – each image 

observation has an associated dense pixel-class map and an 

overall label. We use both coarse labels based on well-known 

major UI control groups and fine labels where each type of UI 

visual has multiple sub-classes. 
 The second dataset, the so called “natural” dataset consists 
in hand-drawn examples of user interface primitives or actual 
user-interfaces mockups. It is important to mention that this 
dataset is limited in size due to the complicated nature of the 
hand-drawing and scanning process. Nevertheless, we are using 
varied image dataset augmentation approaches such as random 
rotation, random shifting, random channel shifting, random 
flipping, random rescaling, random cropping in order to 
dramatically increase the size of our proposed natural image 
dataset (up to 7 times the original size of the natural dataset). It 
is important to mention that most of these proposed image data 
augmentation methods are not required for the artificial dataset 
due to the actual used image/data acquisition process. 

  

IV. TRAINING AND EXPERIMENTS 

A. Models training setup 

 

 Given the previously presented architecture and datasets 
with dense-labels per image and considering each image has a H 
x W size, for N mini-batch images our training objective is to 
minimize the dense output cross-entropy or more specifically the 
negative log likelihood objective function w.r.t. the model 
parameters Θ.  
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 The dense output of the DAG is nothing more than a Softmax 
function applied to each 1x1xC “fiber” of the final output 
volume. 
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 We trained our models end-to-end using Adam optimizer on 
batches of variable size in multiple training experiments. We 
used an initial learning rate of 0.01 and applied learning rate 
decay based on monitoring the dev-dataset loss plateauing 
behavior.  

 



B. Training hardware infrastructure 

 
 As a training environment infrastructure, we used both GPU 
and CPU. The training machine CPU capabilities consisted of 
32 GB RAM and 2 Xeon processors each with 8 physical cores 
for total logical core count of 32 cores. Nevertheless, the main 
training of our models has been done on the machine GPUs 
summing a total of 4224 CUDA cores provided by a 16 GB 
Nvidia Pascal 5000 GPU with 2560 CUDA cores and an 
additional 8GB Nvidia Maxwell 4000 GPU with 1664 CUDA 
cores. 

 In our pipeline validation experiments we have targeted both 
types of proposed scenes: artificial images - that is actual user 
interface screen-shots – and also hand-drawn user interface 
mockups. For the experiments we used several versions of our 
models that varied both the model required 
memory/computation capacity and the model training time. We 
considered this approach in order to cover the potential usage of 
our model pipeline in smart mobile devices as previously 
mentioned in our architecture section. 

 

Model ArtAcc ArtRec NatAcc NatRec 

Cloudifier50_1 85.1% 91.2% 84.3% 88.0% 

Cloudifier50_2 88.3% 92.1% 86.2% 90.7% 

Cloudifier109_1 95.2% 97.2% 93.1% 95.2% 

Cloudifier109_2 98.4% 99.7% 96.1% 96.1% 

Table 1 – Experimentation results for test dataset 

  

The final results of our experiments presented in Table 1 are 
based on two different models both following previously 
described architecture. More specifically, Cloudifier109 is the 
109 layers model presented in Proposed Architecture section and 
Cloudifier50 is a reduced version in terms of modules of the 109 
layers version. The benchmarking tests have been performed 
both on a reduced performance mobile computer using a Nvidia 
GeForce 940MX with only 2GB RAM and a total of 384 CUDA 
cores. We have also considered running the inference task and 
on a Nvidia Jetson TX2 device with 256 core Pascal GPU and 
8GB of RAM. The inference environment for our models has 
been based on TensorFlow [15] and also on a specialized 
inference engine, namely TensorRT - a library that facilitates 
high performance inference on NVIDIA GPUs. Final results 
have been generated by cross-validation approach and averaged 
over target environments. 

 For training/validation/testing split we decided to retain 7% 
of the whole joined dataset for validation/testing purposes and 
93% has been used for actual model training. Out of the 7% 
retained dataset we used 4% for testing and 3% for validation. 

During the initial training experiments, we additionally used in-
training random validation dataset of 5% of proposed training 
data. 

 The tests and the results have been divided in two categories 
– the artificial scene inference and the natural hand-drawn 
mockup scenes inference. In our experimentation results table 
ArtAcc and ArtRec represent the accuracy and the recall for the 
artificial dataset tests, while NatAcc and NatRec represent the 
accuracy and the recall for the natural hand-drawn scenes. 

 As it can be observed from the above presented performance 
indicators we achieved results that clearly demonstrate the 
capability of our model to infer user interface functionalities 
based on static scenes. 

 

V. CONCLUSIONS  

 
 Our proposed models have achieved beyond state-of-the-art 
results in the area of user-interface scene inference and a new 
state-of-the-art status in the area of natural UX mockups 
inference where we did not identify any particular current state-
of-the-art. Although it has proven a powerful approach for the 
proposed tasks, our end-to-end pipeline is not yet capable of 
inferring actual high-level functionalities. Thus, one area of 
further research and improvement of the end-to-end pipeline 
model is the addition of high-end application functionality 
inference, albeit only for artificial user-interface video streams. 
This future proposed work will augment our models with the 
ability to analyze a video stream presenting a actual user-
application interaction and infer actual user experience 
including high-level process functionality. This will further lead 
to the potential employment of sequence to sequence models 
that will generate actual high-level process functionality – rather 
than the basic one generated by our existing models. 
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